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ABSTRACT 

Let X be a Banach  space with a basis.  It is proved tha t  if (a) all bases o f  X are 

shr inking,  or  (b) all bases  o f  X are boundedly  complete ,  then  X is reflexive. 

1. lntraduction. A basis {x,}~= 1 in a Banach space X is called shrinking, 
if for every f ~  X* 

lim [sup o~ [ f (x)] ]  -- O. 
n-~ o0 Ilxl[ = 1, x~Exdi=. + a 

(For any sequence {yl}~°= 1, [Yit~ 1 denotes the closed linear subspace spanned by 
{Yi}~°= 1.) A basis {x,},~l is called boundedly complete if for any bounded se- 
quence { ~'=la,x,}.°°-~ ~,°?=la,x , converges in X. A sequence {yi},__°° t in X is 
called a basic sequence if it forms a basis in [Yi]i~ 1. 

R. C. James proved ([2], Theorem 1) that a Banach space X with a basis 
{x,},~ 1 is reflexive if and only if {x,}~= 1 is both shrinking and boundedly com- 
plete. 

I. Singer [3] investigated the connections between reflexivity and some pro- 
perties of basic sequences. He proved the following result (which is a part of  [3] 
Theorem 2 and Corollary 1). 

PROPOSITION. Let X be a Banach space with a basis. Then the following pro- 
perties are equivalent: 

(1) X is reflexive; 
(2) Every basic sequence in X is shrinking; 
(3) Every basic sequence in X is boundedly complete. 
I. Singer raised the question, whether the Proposition remains true if we re- 

place "basic sequence" by "basis"  in (2) and (3). (A similar question was raised 
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by J. R. Retherford in [4].) Using an idea of [3] we show in this paper that the 
answer is positive. 

2. Preliminary lemmas. We begin with a few, essentially known, simple lemmas 
and give their proofs for comp!eteness. 

LEMMA 1. Let X and Y be two ( n -  D-dimensional  subspaces o f  an n d imen-  

sional Banach space E. Then  there exists a l inear i somorphism T f r o m  X onto 

Y such that f o r  every x ~ X 

(1) 11 x [I ~ II Zx II ~ 311 x II. 

Proof. As is well known, there exists a projection P (resp. Q) from X (resp. Y) 
onto its ( n -  2) dimensional subspace X c~ Y with I1P II =< 2 and I I I -  P II = 1 
<resp. II Q II ---< 2 and II z - Q II = ~) Let x o (resp. Yo) be a unit vector in X (resp. 
Y) such that P(Yo) = 0 (resp. Q ( y o ) =  0). The transformation T from X to Y 
defined by T ( m  +aXo) = m  + a y  o for any real a and m e X n Y i s  obviously 
linear. Moreover 

II T (m  + axo)]l = II m + ay  o 11 <- IIm II ÷ I a [ 

- II P(m + aXo)I[ + II <x - P ) < m  + aXo)II ~ 311 m + ax o II 

Similarly, II m ÷ aXo It ~ 311 m ÷ ay o II = 311 r(m + ayo)II. This proves (1). 

X oo 
LEMMA 2. Let  { ,},,=1 be a basis in a Banach space X .  Assume  that f o r  

k oo . ~ ptk+l) is a basis ~r  , p(k+l) where{p (  )}k=l each k => 1 ).Yifi=p(k)+ l q l  L X i 3 ,  =p(k)+ 1 is an increasing 
sequence of  nonnegative integers and p(1) = 0. Assume  fur ther ,  that there exists 

S~ I p(k+)l an M > 0  such that f o r  any  k, any  sequence tt~ifi=p(k)+l o f  scalars and 
p(k) < m < n < p(k + 1) 

i = p ( k )  + 1 # = p ( k )  + 1 

Then  the sequence {Yi}i% l f o r m s  a basis in X .  

oo x oo is a basis there exists some Proof. Obviously [Y,],=I = X .  Since { ,} ,=1  

c oo ands  > r  II r,7o, c,x, II < N II Y,=1 c,x, I1 N > 1 such that for any sequence { i}i = 1 = = s . 

Assume that j < m, p( j )  < r < p ( j  + l)  and p(m) < s < p(m + l);  let 
~p(k+l) b,x~ be the representation of ,--~=pCk)+l a~y~ with respect to the i=p(k)+ 1 ~ p ( k +  1) 

basis {Xn}n~=l k 1,2, 3 , . . . ,m  - 1 and ~-pcm+t~ tb,x~ the representation of - "  1-- | = p(ra) + 

~,~=pCm~+laiy~, then we have, by (2), 
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p(J) 

II ~ a iYi Iii ~_ iJ i~=l a tYi II + I i a, , ,  1i 
i = 1 " :  i = p ( / ) +  1 

U I " "  II <= II b ix i  + M ~ '  a iY i  
t = i  i=p(j)+ l 

i[ II II'"'" H < N ~, b~x~ + ( I + N ) M  ~, aiy~ 
I = 1  i = l  

p(m+ 1) 

= 2N(1 + N)M [I ,=1 ~" aiy, II 

The last inequality (which is obviously true in the case j = m) is valid for every 
00 sequence {a~}i= ~ and s > r. Hence, {y~}~o= 1 is a basis in X. 

LEMMA 3. Let 0o {x,}~=~ be a basis in a Banach space X.  Assume that 
= vpp(k+1) ,, ~" [c oo Yk ~=p(k)+l"i~i  where {p( )}k=2 is an increasing sequence of  positive in- 

Z oo tegers, p(1) = 0  and yk~O.  Then there exists a basis { ~}i=1 in X such that 
f o r  each k > 1, Zp(~+ l) = yk. 

Proof. Obviously, for each k>= 1 there exists a projection P~ from 
%. ] p ( k +  1) ~ai=p(k)+ 1 onto a (p(k + 1) - p(k) - 1)-dimensional subspace E k such that 

P~(y~) = o, II P~ II --- = and II i~ - P~ II = 1, k = 1, 2, 3 , - ,  rk denoting the identity 
r v  "1 p(k + 1) on u-~J~=p(k)+r By Lemma 1 there exists a linear isomorphism Tk from 

[-,. qp (k+  i)- I -'~J~=p(k)+l onto E k satisfying (1). Put 

~Tk(xi) for p(k) < i < p(k + 1) - 1 
z i  I 

~Yk for i = p(k + 1). 

Since {xi}~= 1 is a basis in X there exists an M > 0 such that for any m < n and 
al, a2, . . . , a .  II ~,~=la,xiII < MI I ~ = l a t x ,  ll. Hence for any m < p(k + 1) and 
any sequence bp(~)+ ~, bp(k)+2, "", bp(k+ ~) 

t =r ( ;O + I i = u(k) + 1 i =U(k) + 1 

.,.._1 IJ U .,.._1 Jl 
3M u ~ bix, < 9 M  ~, b,zi 

l = p(k) + 1 i = p(k) + 1 

\ l  = p(k) + 1 l = p(k) + 1 

By Lemma 2, {zi}i~l is a basis in X. 
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3. The main results 

THEOREM 1. Let X be a Banach space with a basis (x,,}~=,. Assume that 
all bases in X are shrinking. Then X is reflexive. 

Proof. If X is not reflexive then by the above-mentioned result of R. C. James 
([2] Theorem 1)  {x,,),", is not boundedly complete. Hence, for a suitable 
sequence {ai);, and some M > 1 we have for every n 1) x;=, aixi 11 < M ,  while 

aixi does not converge. It follows that there exists an increasing sequence 
p(k) of nonnegative integers and a real d > 0 such that 

By Lemma 3, there exists a basis {zi),OO,, in X with zp(k+l, = Z??p'(&,aixi 
k = 1,2 3, ... , and d 5 11 zi 11 5 2M,  thus there exists a real N > 0 such that for 
any m < n and a1,a2,...,an 

Denote by (ji}zl the biorthogonal sequence to (zi):= and define 

It is easy to see that [u i]E1 = X and that { u , ) ~ . ~ ,  {g,)i"O,, form a biorthogonal 
system. (See [3], Proposition 2). 

For any x E X define UXx) = gi(x)ui. If p(k) S n < p(k + 1) then, by 
(4) and (5), changing the order of summations, we get that 
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Since for each i, d < I[ zi II ~ 2M it is easy to see that the sequence ~11 f, I1~=1 is 
bounded by 2 N ' d  -1. Hence II u~(x)ll---2NMd -1"  Ilxll, and therefore by [1] 
page 69 (4) {ui}i~ 1 is a basis in X. But for every k > 1, 

fp(2)(Up(k+ I)) = fp(2)( E k = l  Zp(i+ 1)) = 1 

which means that {u~}~= 1 is not shrinking. This contradiction shows that X is 
reflexive, and Theorem 1 is proved. 

Using the dual method we prove 

X co THEOREM 2. Let X be a Banach space with a basis { n},,=l" I f  all the bases 
of X are boundedly complete then X is reflexive. 

Proof. Assume that X is not reflexive. Then, again by the result of R. C. James 
([2] Theorem 1), {x,}~= ~ is not shrinking. It follows that there exists a functional 
f e  X*, a real d > 0 and a sequence {Yk}k°°=l in X such that 

p(k+ 1) 

(6) Y k  = ~, aixi, X <= II Y~ II --< d k -- 1 2, ... 
i = p ( k )  + 1 

and 

(7) f(yk) = 1 f o r  k = 1 , 2 , . . . .  

(p(k) has the same meaning as before). 
F x - i p ( k +  1 ) - -  F x l P ( k + l )  Denote by E k the subspace { x : x e  L~ ~ji=~(~)+l,J(x) = 0} of L iJ~=p(k)+l and 

r ~p(k+l) Rk(X) =f(x)yk.  Rk is a projection define for each k > 1 and Xel_Xdi=p(k)+~ 
from [Xl]~t-_kTc~))+l onto the line [Yk] with II R~II = 11 f I1" II Yk II -<- IIf lid It fol- 
lows from Lemma 1 and the proof of Lemma 3 that there exists a basis {z~}~ ~ in 
X and a real M > 1 such that 

(8) 1 Z I1 z, II z d i = 1,2,3,.. .  

(9) Zp(k+ 1) = Yk k = 1, 2, 3,... 

(10) f(z~) = 0 for every i ~ p(k) k = 2, 3, ... 

(1~) II r, f,(x)~,ll z MIIxll for every m and every x e X ,  
i = 2  

oo Z oo . {f~}i=l denoting the biorthogonal sequence of { i}i=l 

(Ek here plays the role of Ek in Lemma 3 while Ik-R~here plays the role of Pk" 
The proof of our last assertion is the same as the proof of Lemma 3, with one 
exception: II P~ II --< 2 while for I k --  R k we have II I k -  Rkl[ < I + /If I[ d.) 

We define 
/zi for i v~ p(k) k = 3,4, ..- 

ui / Zpck)--Zptk_l) for i = p ( k )  k =3,4,-- .  
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and [ f~ for i ~ cp(k) k = 2, 3,. . .  

g, = f for i =p(2) 

k-1  

t, f - ~ fptj) for i = p(k) k = 3, 4 , . . .  
1=2 

oo u co 
It is easy to see that [u~]~= 1 = X and that { ~}~= 1 {gi}~°= 1 form a biorthogonal 
system (see (7) and (10) and [3] Proposition 3). 

For each x e X define Qn(x) = ~.~=lgi(x)ul. Using (8) and (11) and changing 
the order of summations we have for p(k) < n < p(k + 1) 

llen(.)l = II i :~(.)., +s(x)..,., + ~ Is(.)- ,~Is..,<x)](..<._ z.~,-,,)ll 
i=1 1=3 j=2  

i#p(j) 

i = 1  
k - 1  

+ lls.(,,(~)..,,> II + I1( x s..>(~))z.(,, II 
j = 2  

k - 1  

< [3Md +3allsll + II :c s,,,,ll d ]  Ilxll 
j = 2  

By (7) and (10) for every x = ~ = 1  aizi in X 

lira fp(j)(x) -- lira ap(j) -- ~ ap(~) = f ( x ) .  
n~oO j = 2  n-.*oo j = 2  j=2  

Therefore the sequence { ~=2fp l j )  }~=2 is bounded by some K > 0. It follows 

that for every x e X and i n t e g e r  n II e.(x)II--- (3M + 3 II:ll d + I':d). I1 x I1" Thus, 
{u~}~= 1 forms a basis in X, but this basis is not boundedly complete since 

II ~ u,,~+,ll =11 i (z,,~+l,-z,,~,)ll 
k=2 k=2 

= I1 ~,,~,-~,,.+1,1t--< =d, 
oO U p(k+ 1) converge = and ~k=2 does not (tlu,,~+,ll > M-~).  This concludes the 

proof of Theorem 2. 
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